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For the problem of Burgers turbulence with random forcing, a similarity functional solution of the
Hopf equation is presented and compared with scaling arguments and replica Bethe-ansatz treatments.
The corresponding field theory is almost nonanomalous. In one dimension the local fluctuations develop
self-similar time-dependent behavior, while relative fluctuations within the correlation length form a
steady state with Gaussian distribution. This is the precise meaning of the so-called fluctuation-
dissipation theorem. The one-dimensional properties are also studied numerically. It is shown that the
fluctuation-dissipation theorem is invalid above one dimension and higher-order cumulants are nonzero.
In two dimensions the cumulants exhibit a logarithmic spatial dependence, which is close to but different
from that in the Edwards-Wilkinson case. No other similarity functional solution is found, which may
indicate that the “strong-coupling” results are not described by the forced Burgers equation.

PACS number(s): 47.10.+g, 05.40.+j, 68.10.Jy

I. INTRODUCTION

Burgers model of turbulence [1,2], interface growth [3],
ballistic deposition [3,4], domain walls in the anisotropic
random-bond Ising model [5,6], directed polymers [7],
and other phenomena is described by the Burgers equa-
tion with external conservative stirring

3,v=vViv—1Voi+Vy, (1.1)
which with the help of the velocity potential
Vh=—A"lv gives an equation

3,h =vV?h +%(Vh 2+7, (1.2)
also known as the Kardar-Parisi-Zhang equation [3].

In our previous papers I and II [8] we considered the
problem of random initial conditions and developed a
Liouville-like field theory which enables one to calculate
correlators of the field and study their time relaxation. It
was shown that three different classes of initial conditions
decay unlike each other and universality is limited. In
this paper we address the development of Burgers tur-
bulence starting with the Burgers field at rest
v(x,t=0)=0 [or A(x,0)=0] under the action of external
conservative stirring V7 which is distributed as a Gauss-
ian uncorrelated noise in space and time,

’ (1.3)

~ _ 1l ro
O[n]~exp 4Df17 dx dt

and subsequently make a generalization for a non-
Gaussian noise. A spatial cutoff a is required in all di-
mensions to keep the problem well defined.

Noise introduces spatial correlations and forms a dis-
tribution of the velocity field with steady-state features at
length scales of the correlation length L (#). At larger
distances the velocity remains uncorrelated. The situa-
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tion is somewhat analogous to the physics of critical phe-
nomena, say, ¢* theory [9], provided that the role of time
is played by T —T,. However, the exponents of the d =1
version of Burgers turbulence are simple fractions, + and
2 [1-3,6] (to be properly presented below). This provides
some hope that in the associated field theory the anomaly
is limited. Let us recall that in critical phenomena it was
the anomalous behavior of correlators with merging
points, first indicated in [10,11], that resulted in too gen-
eral similarity functionals (also known as “bootstraps”)
for the hierarchy of correlators. As a result additional
unknown constraints were needed. This method was sub-
sequently in decline due to the invention of the € expan-
sion and conformal field theory. Seemingly
nonanomalous exponents of the problem (1.1)-(1.3) sug-
gest that the situation here may be different. Note that
nonanomalous does not mean trivial; they are not neces-
sarily diffusionlike exponents.

In Sec. II we present the similarity functional for the
Hopf equation associated with (1.1)-(1.3). Kardar’s re-
plica Bethe-ansatz results [6] are rederived in Sec. III to
help build the explicit similarity functional in Sec. IV. As
explained in Secs. III and IV, the similarity functional
contains correlators which are not present in the results
obtained by using the ground state wave function of the
replicated Hamiltonian. The large time limit and the re-
plica limit do not commute, and that is why replica
Bethe-ansatz results are incomplete, although they are re-
markably close to the results of the similarity functional
solution. We then discuss the fluctuation-dissipation
theorem [12,13]. Section V generalizes our results for a
non-Gaussian noise; Sec. VI contains the relevant com-
puter simulations in the one-dimensional case. In Sec.
VII we apply the same ideas to the two-dimensional case.
Only a few cumulants are obtained explicitly but
behavior similar to the Edwards-Wilkinson type is evi-
dent. There exists a possibility that above two dimen-
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sions the problem (1.1)—(1.3) becomes trivial. Numerical
“roughening” exponents are briefly discussed.

II. THE HOPF EQUATION AND
SIMILARITY FUNCTIONAL

We shall work with Eq. (1.2), and the field 4 (x) is con-
ventionally called the interface height profile [3]. Let
P(h(x),t) be the probability of finding the interface
profile 4(x) at time ¢. It obeys the Fokker-Planck equa-
tion (Hopf equation) [9]

be) A
62—+_
v 2

3,8 (x),1)= [ dx lDJz(x)+J(x) 5700
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2 5
Sh(x)? S8h(x)

3,P(h(x),t)= [dx D

X[vaih(x)-{-%[axh(x)]z]

The logarithm of the solution § is assumed to be Taylor expandable:

ln9=F1(t)fJ(x)dx -i—%f.](xl)J(xz)Fz(xl—xz;t)dxldx2

0

LD R ECHERPCATAER

where we used the translational invariance of the prob-
lem. The similarity functional ansatz is the assumption
that for any n at length scales exceeding the cutoff a the
cumulants are given by

F(x;—X%Xy,...,%X,_1—X,)
a XX Xy —1 n
= n e ey s 2.5
SRl oy L) 2.3
J

_A .
3 —Eaxlaszz(xl —Xy2)|

Xl:xz 4

[3, —v(a2, +a§2)]F2<x1—xz;z)=2pa(x1—x2)+%[axlaxﬁ(x,—xz, .

[a,—’v(az +32 +ai )]F3(X1—X2, PR
*1 *2 3

’xnﬂl_xn;t)dxl

XP(h(x),t) . (2.1
The generation functional
Q(J(x),t)Zfi)[h]?’(h(x),t)exp{fJ(x)h(x)dx] (2.2)
satisfies the Fourier-transformed equation (2.1)
5 2
xml ] lg(J(X),I) . (2.3)
ceedx, (2.4)

where all spatial dependences are scaled in terms of the
correlation length

L(t)=t'=, (2.6)
which is assumed to obey power-law behavior. Ex-
ponents «, and z are to be determined together with the
similarity functions f,. Inserting expansion (2.4) into the
Hopf equation we get the following hierarchy for F,:

(2.7)

,x2-x3;t)|xl=x3+ -], (2.8)
,xz—x3;t)=Z[6xlax4F4(x1——x2, ... ,x3—x4;t)lxl=x4+ s ]

FAb {0y Fa(x3—X;50)3, Fa(x3—Xpt)+ -+ - ], (2.9)

and so on, b,,, =1[1/(n —1){(m —1)!]. The structure of
higher-order equations can be seen from (2.7)-(2.9). In
the equation of order » the notation - -+ in square brack-
ets stands for n possible pairings of the extra argument
X, 4+, with all x;,...,x,. The notation in curly
brackets stands for n! possible permutations of the in-
dices and for all possible binary products of cumulants
which result in the combined order n +1. By combined
order we mean that, for example, the product O (F,F,)

f

entering Eq. (2.9) is of the fourth combined order. Note
that the only inhomogeneity in the hierarchy is the
noise-related 8 function in Eq. (2.8). This is a distinct
feature of Gaussian noise. More complex noises will be
considered later.

It is important to avoid immediate substitution of the
similarity ansatz (2.5) into the hierarchy, since (generally
speaking) the nonlinear terms contain pairings of argu-
ments, i.e., request cumulants at separations of its argu-
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ments where this ansatz is invalid. The problem here is
twofold. First, we encounter distances of order a where
continuous description is no longer applicable, and ob-
jects like 8(0) must be taken care of. Second, in the
anomalous theories, pairing of arguments may generate
new exponents. While the first part of the problem is
resolved by introducing cutoff-related constants, the
second part leads to new similarity forms for nonlinear
terms and the hierarchy becomes underdetermined, with
many possible solutions.

The situation simplifies in the case of nonanomalous
theories; however there is in general little hope that the
entire hierarchy can be solved as a whole. In our case,
part of the solution of (2.7)-(2.9) has been available, and
we found it possible to satisfy the hierarchy.

1

= [lar

h(x,t)———ln{fd of X0= x@[x Jexp
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III. REPLICA BETHE ANSATZ

The solution of the replica Bethe ansatz by Kardar [6]
will be rederived and used for discussing linear and time-
independent terms in F,’s. For this purpose we apply the
Hopf-Cole transformation [1,8] #=(2v/A)Inw and find
that w obeys the equation

8,w=vV2w+%;nw R (3.1)
which is sometimes interpreted as the transfer-matrix
equation for the Boltzmann weight of a directed polymer
[13], when time plays the role of the longitudinal direc-
tion. Solving Eq. (3.1) and making the inverse transform
we obtain

+—77(x(t ),t") (3.2)

I

The beginnings of the trajectories entering (3.2) are uniformly distributed over the entire space to ensure A (x,0)=0.

For convenience we recall the dimensions of the variables and parameters:
=L /T, and [w]=1, where L and T stand for length and time, respectively.

(R]1=L, [7]

[vl=L*/T, [D]=L%*2?/T, [A]=L /T,

In order to calculate different correlators of 4 (x,¢) in the method of replicas the logarithm entering (3.2) is replaced
by Inw=(1/n)w"—1)|,_ ., and the distribution (1.3) is employed to compute averages. One finds that if m trajectories

x(?) intersect at a particular site x,¢, the averaging gives

Amn6  n*a’
2v 4D

=exp

o d n\/a
f v VagD 41rD

4v%q?

where a and 6 are the spatial and temporal cutoffs, respectively.

A*m?D6O

’ (3.3)

The problem is independent of the temporal cutoff.

Note that the result (3.3) is model sensitive. Usage of different noise distributions may result in completely different re-

plica interactions.
The 2

term m is the signature of
licated trajectories.

(h(x,t)) first. Itis given by

PN
(h(x,t))= . 31_12)[(w y—1]

2v 1 j= t) X
ZT; Hf X0, - .Z)[ exp[ fL dt]—l]
igr| 1 | dx; AMD | AD
L = — == —_— o)
" j§1 4v dt' 4’\’2(1 d 2 2 ,% (x )

where L, can be interpreted as the n-particle Lagrangian.
Consider the n-particle wave function

\I’(x,, P

_.i=n x;(D=x; , ,
_jI;I] fdxo’j ij(t)=x0’j$[xj ]Cxp [f Lndt ] , (3.5)

» Xp5t)

This also stems from the fact that the spatial cutoff is explicitly present in the height correlators.
Gaussian

Kardar suggested writing it as 2[1m(m
pair weights, the latter being proportional to the number of pairs tm(m —1).

noise; it indicates pair interactions of rep-

—1)+1m], i.e., decomposing (3.3) into linear weights and

Let us calculate the simplest correlator

)

n—0

(3.4)

[
which satisfies the Schrodinger equation

3,Y=H v+5(1), (3.6)
with the Hamiltonian

§M, 8% L AD | AD
A,= 8x,—x;). (3.7

" jél ax?  4via 2v2 ,%
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The solution of Eq. (3.6) can be written as

v=Sc "'y, ., (3.8)
!

where E, ; and ¢, ; are the eigenvalues and eigenfunc-
tions of

Hnd’n,l = _En,llpn,l ’

and summation in (3.8) is performed over all discrete and
continuous states /. In the rest of Sec. III and throughout
Sec. IV we shall limit ourselves to the one-dimensional
case.

The ground state of the Hamiltonian (3.7) was found
by Kardar [6], and it is given by the Bethe ansatz

(3.9

A*D
Yno=toexp | ——5 X lxi—x;| |, (3.10)
' 2v i<j
with the energy
A*D A*D?2
=— n— n(n“—1). (3.11)
O M 124

Equations (3.10) and (3.11) can be verified by inspection.
Naive generalizations of this ansatz to, say, two dimen-
sions with K, modified Bessel functions instead of ex-
ponentials do not work. The wave function 9, , does not
satisfy the initial condition ¥=1, so that excited states
have to be invoked as discussed by Bouchaud and Orland
[6]. These authors list two major problems with the repli-
ca Bethe-ansatz solution of our problem: (i) moments of
w diverge too quickly while moments of h are well
defined, and (ii) excited states grow in time more slowly
than the ground state, while continuous states decay ex-
ponentially; this encourages one to take the limit ¢ — oo
first and n—0 second. We shall see below that these
problems [most probably (ii)] lead to losing terms. Given
that the low excited states are included, calculations be-
come quite difficult and additional model assumptions
have been used by Bouchaud and Orland [6] to obtain the
exponents of the correlation length. It is shown below
how to get them directly from (3.10) and (3.11) without
employing excited states.

The ground state is part of the solution and one may be
interested in the part of the final average provided by this

state. We then set the amplitude ¥,=1 and find
Y(x,...,x;t)=exp(—E,t), so that
v .. {w")—1 2v .. Euot
h(x,t))g=—lim—F——=—"— —
{h(x,0)) }»anO n kgl—rflon
_|AD _AD?
2va 6v*
(3.12)
Similar calculations yield
(h(xl,t)h(xz,t)>0
2 P (w0 = 1[w™(x,,0)—1])
- li
A | nm>0 nm
2D
= v |x1 le , (3.13)
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2AD

Ch(xy,0h(xy,)h(X3,1))g="">
v

t, (3.14)

and zero for all higher moments. The index O emphasizes
that these results are obtained with the help of the
ground state. Let us discuss them. First of all, Eq. (3.12)
predicts the inversion of the growth direction with in-
crease of A at the point A=23v?/aD, while Eq. (1.2) aver-
aged over space ensures that d,{A(x,?)) is non-negative.
This phenomenon is cutoff dependent and the second
term in (3.12) should be dismissed in the continuous limit
as compared to the first one in parentheses in the right-
hand side of (3.12). At the same time this is a warning
that the discrete version of the problem (1.1)—(1.3) may
have properties different from the continuous version,
and influence, for example, numerical studies at large A.
The possibility that the discrete model may have its own
behavior was recognized by Kardar [6].

Equation (3.14) indicates that the celebrated exponent
h «t173 is present in the distribution. One then expects
terms ¢2/3 in (3.13) [14], which are absent. It is also clear
that answers (3.12)—(3.14) are not actually the moments;
they look closer to cumulants, since terms {/ )? are ab-
sent in (3.13), and so on. One may conclude that only the
terms which are linear in time and independent of time
are obtained from the ground state. Barring the incom-
pleteness, the replica results happen to be already
sufficient for determining basic exponents if one assumes
global scaling of 4 fluctuations. The precise meaning of
this global scaling is that the exponents a, in (2.5) are
proportional to n with the exception of a;. Then, Eq.
(3.13) gives & ~L'/? and Eq. (3.14) results in & ~1'73, so
that L ~¢2/3 is the correlation length. We shall see in the
next section that expressions for cumulants of % are very
close to (3.12)—(3.14). Despite the obvious success of the
replica method, and help that we obtained from it in the
next section, we feel that at the present stage of under-
standing it remains uncontrolled for our problem.

The nontrivial contribution to the third moment (3.14)
means that the distribution of 4 at short length scales is
not Gaussian. At first glance this contradicts the state-
ment that the so-called fluctuation-dissipation theorem
(FDT) applies to Burgers equation within the correlation
length [12,13]. The reader may be interested in explicit
checking of the FDT. It can be done with the help of
Ref. [13], where the authors use scaling arguments and
argue that the distribution

_ v

Po[h] <exp D

(Vh)%dx (3.15)

(in our notation) holds at distances x <<L(¢) in one di-
mension. It is a straightforward task to put (3.15) into
the Hopf equation (2.3), assuming that the left-hand side
vanishes, 3,P=0, for such a steady state. Diffusive terms
cancel,

o)
[D 8h(x)

—vV2h(x) I‘Pozo , (3.16)

and we are left with the integral
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[ dxv?h(Vh)? . (3.17)

This integral is nonzero above one dimension and, there-
fore, the distribution (3.15) is not a solution. In one di-
mension the integral (3.17) is evaluated at the boundaries,
and may be zero, although there is no guarantee so far.
We recall that the boundaries of the integration region
correspond to x ~ L (¢) and so far we know nothing about
the distribution at such distances. Making the system
periodic does not help either, provided that L (¢) does not
exceed the system size.

We shall see in the next section that distribution (3.15)
does describe relative fluctuations of the interface in one
dimension, i.e., the fluctuations of the field A (x,t?)
—h(x',t) for the separations |x —x’| smaller than the
correlation length. As for the local fluctuations of
h(x,t), they are not in a steady-state regime and cannot
be described by (3.15). There is nothing novel in this sep-
aration of local and relative fluctuations—the same
scenario takes place for the pure diffusion equation with
external noise. However, in the latter case both are
Gaussian.

We note in passing that the same distribution (3.15)
may give the steady state of relative fluctuations for the
stochastic partial differential equation of the type (1.2)
with a quite general function of V4, including the func-

tion V' 1+ (Vh)? [3].
IV. BUILDING THE SIMILARITY FUNCTIONAL

Let us understand the meaning of Egs. (3.12)-(3.14) in
terms of the hierarchy (2.7)-(2.9) and similarity ansatz
(2.5). With Gaussian forcing the only source term enters
Eq. (2.8), and it is appropriate to consider it first. If the
correlator (h(x,,t)h(x,,t)) at late times or |x;—x,|
<<L(t) contains the term < |x;—x,| the diffusional
operator in (2.8) gives a 8 function which matches the
source term. The same spatial dependence can be seen
from (3.15). It is conceivable that in the second equation
of the hierarchy the singularity (8 function) is balanced
by the diffusion-based derivative of the second-order cu-
mulant. Yet one could have used F; to balance the
singularity, or both F, and F;. However, we traced
these extra possibilities further and found contra-
dictions. Numerical studies [15] and the studies present-
ed in Sec. VI also support Brownian-like behavior of the
pair correlator at distances shorter than L(z) with no
contribution from higher cumulants.

The time-independent term in {A(x,,t)h(x,,t)) indi-
cates that a,=1 and

X177 X2
Fy(x,—xp;8)=L(2)f, T
—L(o |0+ 2
|x1—x2|
—_— 4.1
+o0 AT , 4.1)
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where the expansion is applied at |x, —x,| <<L(z).
Returning to Eq. (2.7) we find that the term
axlasz2|x1=xz is equal to (D /v)8(0). This is the famil-

iar object that must be of order of the inverse cutoff a .

The numerical coefficient remains undetermined, e.g., lat-
tice version dependent. Equation (2.7) then gives

-z

Gp i A g 4.2)
z 2v

ie.,
a,=z, fi~AD/2av. 4.3)

Thus the hierarchy is broken, and we shall build the rest
of the similarity functional. Let us say a word of caution
from the very beginning that the similarity solution thus
obtained is not necessarily unique, and our nonanomalous
solution does not, in principle, exclude possible anoma-
lous ones. On the other hand, such a freedom allows one
to make guesses.

Note that the usage of the similarity ansatz in Eq. (2.7)
would result in the term

ay=2 .,
axlax2F2|x1=x2=L : f2 (0) ’

i.e., provide us with incorrect scaling, a;—z=—1. The
discussed difference is induced by the singular & function
in Eq. (2.8), and is the only anomaly in the theory. Given
that we balanced the 8 function by F, (and not by F3), we
expect no additional singularities. The reason for this is
that F, will only be differentiated once from now on; it
happens in all the equations of the hierarchy starting
from the fourth one. Each time it is balanced by the
diffusion-based second derivative of the next order cumu-
lant, which in its turn is “injected” further on in the form
of its first derivative, and the singularity is completely
healed. We are then ready to insert the similarity ansatz
into the rest of the hierarchy.

Returning to Eq. (2.8) at finite distances and using the
available relations among exponents, one finds

1

“Z‘Llaz(t)[fz(yl =)= =y 3y —¥5)]

= 2L 018,,3,, /315203y, =,
+ayzay3f3(J’1,J)2aY3)|y2=y3] (4.4)
which results in
z+a;=3, (4.5)
and at short distances
aylay3f3(y1,y2,y3 )|y1=y3
+3y26y3f3(y1,y2,y3)|y2=y3=;%f2(0). (4.6)

Here we used abbreviated notation for arguments of f;.
Equation (4.6) shows that the third cumulant f; is prob-
ably the quadratic form of its arguments at short dis-
tances,
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F1=150)+ 2 £2(0 31 =92)31 )

+(y, =y )y, —ys3)
3=y )ys—y)], @&7)

_LL%_
z i<j

:"Larz(t)(ail"‘aiz"'aig V3V 1,¥2,p3)+ %‘!—La4—2(t)[aylay4f4(y1, ..

+7\b22{ay1f2()’3_J’1§t)ay2f2()’3_J’z;t)+ R

We now have to choose dominating time dependencies.
If one assumes that a;—2 is to contribute to the main or-
der in Eq. (4.8), then the inequality a;=2 follows from
terms proportional to A. Equation (4.5) gives z <1 and
we arrive at a contradiction, a;—z >a;—2, i.e., a;—2
does not contribute to the leading order. One is left with
three terms in (4.8) and four possible choices. Generally
speaking, tracing all choices corresponds to an exponen-
tially growing pattern of logical steps and may lead no-
where. We have found in our case that the only accept-
able choice is to admit that all three remaining exponents
are equal. It was also found that the same results for ex-
ponents are obtained if one makes use of the rule that the
exponent of order n has to be determined from the equa-
tion of order n matching all lower-order A-dependent
terms. One finds a;—z =0 and

=y =z=3 . (4.9)

J

F2f s 1y20y390)— 3 s —JY; )ayi—yjf4()’1»y2:J’3:J’4)]

i<j

A
=-ST[ay16ysf5(y1, . ,y5)|y1=y5+

It can be easily checked that the O(f,f;) terms on the
right-hand side are nonzero, and therefore f, or f5 are
nonzero. We again arrive at a logical branching point in
building the similarity functional. If one assumes that f,
is nonzero, then returning to Eq. (4.11) one finds a possi-
ble symmetric quadratic form for f,

}\,DZ 4
Fa=faO)+3 | f1(0)—==5~| 3 (y;—p;)*; (4.13)
v i<j

the possible mixed form for f5 is suggested by Eq. (4.12),

5
Fs=Ffs0)+12f,(0) 3 (y;—y;*+0(p?),  (4.14)

i<j

‘(1) aszf3(y1,y2,y3)— 2'(% —Y; )ayi—yij(ylyyZ’yB)

. ]+7\,b23{ay1f2(y3—y1)ay2f3(y2,y3’y4)+ PR } .
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with f;(0) being the value of the cumulant with all three
fields at the same point. Additional caution is to be exer-
cized here: Eq. (4.7) is only one (maybe the simplest one)
of many possible expressions which satisfy Eq. (4.6).

The next step is to go over to Eq. (2.9), which to the
leading order takes the form

»Va) y1=Y4+ ]
(4.8)
[
Tracing higher orders one finds
a,=n/2, n=2, (4.10)
cf. [16]. The system of equations for the functions f,

remains unsolvable. However, the behavior of f, at
short distances can be extracted. Progress in this direc-
tion requires steps analogous to those made in deriving
Eq. (4.7). Equation (4.8) becomes

AD?

’y4)|y1=y +.]+ 2

4 v

A
[3(0=7708,8, falyy, - -
(4.11)
It is unclear from Eq. (4.11) if the derivatives of the

fourth-order cumulant are nonzero. To find out the
answer we have to go on to the next order

(4.12)

f

and so forth. The latter result implies that high-order cu-
mulants do not form a steady-state distribution at short
distances, since in the full cumulant Fs the quadratic
terms (4.14) are multiplied by L 2(6)=11%, i.., grow
with time. Although interface width is insensitive to
these corrections, one has no steady-state distribution at
short distances. The only possibility to avoid this is to
choose
2
f 3(0): )\’DZ .

vV

(4.15)

We performed numerical simulations to extract the
behavior of high-order local and nonlocal cumulants.
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The results of these simulations are described in Sec. V1.
We find that relative fluctuations are convincingly Gauss-
ian at short length scales. Therefore the possibility (4.15)
is realized, and f, is zero together with f,(0). It is the
fifth-order cumulant which matches the O (f,f;) term in
Eq. (4.12). This route leads to the Taylor expansion for
high-order cumulants of odd orders

fn=0(y(n+1)/2) , (4.16)

and the nonlocal part of the full cumulant F,, which is
proportional to [L(#)]™ ~FD2_ 1 —173 yanishes in the
steady state. The local terms f,(0) for odd n=5,7, ...
are all zero. See the next section for further discussion of
numerical results on high-order local cumulants.

At this stage it is appropriate to list the available
answers for the one-dimensional problem. The cumu-
lants in (2.4) are given by

_ADt
2av

F, ,

Fz(xl —x2)=t2/3f2((x1—xz)/t2/3)

D
—>f2(0)t2/3+'v_|x1 —x2| ’

2
Fy(x1,%5,x3)=tf3((x;—x,)/t?3, ... )— sz t ’
4
Fo(xqy ... x,)=t"3f . ((x,—x,) /123, .. )0,
(4.17)

and the correlation length of the problem is L (¢)=¢%"3.
The expressions following the sign — are the nonvanish-
ing asymptotic terms at late times (short distances),
|x; —x;| <<t?”* for all i,j. We found only one new term
not contained in (3.12)-(3.14). Numerical factors do not
match exactly, although we tried to eliminate possible er-
rors. The results (4.17) support the assumption of global
scaling used in the renormalization group method for late
times. That is, if one disregards the uniform growth de-
scribed by F,, which can be compensated by adding a
constant to the right-hand side of Eq. (1.2), and intro-
duces the rescalings x =ox’, t=03%' and h=0!"h’
[13] then the results (4.17) do not change.

V. NON-GAUSSIAN NOISES

By a non-Gaussian noise we mean the general case
when all cumulants of noise may be nonzero. However,
the noise is still assumed to be 8-function correlated in
space and time. Such a generalization can be accounted
in the hierarchy (2.7)-(2.9) by adding the noise cumu-
lants to the right-hand sides. Equations (2.7) and (2.8) are
not modified, and, beginning with Eq. (2.9), we add
mD, 8(x;—x,) - - - 8(x;—x,,) where D,, is the mth cu-
mulant of the noise.

It is useful to collect the homogeneous relations for
different exponents that we found in the previous section,
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al=z N

a,—z=a3—2>a,—2,
(5.1)
a;—z=a,—2=a,ta,—2>a;—2,

a—z=as—2=a,ta;—2>a,—2,

where we added inequalities featuring the dismissed
diffusive terms. Our results in one dimension from the
previous section are obtained by the inhomogeneous
source at the level 2, where the d =2 Laplacian
(a§1+a§2) is balanced by the d=1 & function

2D8(x | —x,). The solution satisfies the d =1 Laplace (or
rather Poisson) equation, i.e., it is proportional to
|x;—x,| and a,=1. This reduction in dimensionality is
due to the translational invariance. In the case of non-
Gaussian noise we intend to consider separately the
influence of mth cumulant and select the value of m
which results in a set of the largest {«, }’s. Suppose that
Dj is the only nonzero cumulant. Then the noise d =2 6
function 3D38(x;—x,)8(x;—x;) is balanced by the
d =3 Laplacian in Eq. (2.9). It has a d =2 logarithmic
solution, and one concludes that a;=0. Solving the
hierarchy (5.1) with a;=0 we discover the exponents
a;=z=2, a, =0 and note that the diffusive terms cannot
be neglected. Clearly, this set of {a,}]=0 is negligible
with respect to the set {n/2} found in the previous sec-
tion. Analogously, the fourth cumulant leads to a bal-
ance between the d =4 Laplacian and d =3 & function.
The resulting exponent a,= —1 leads to a solution of
(5.1) which forms a negligible set of {«,, }.

Thus, unless one deals with the rather special case of
the zero second cumulant of the noise, the behavior out-
lined in the previous section becomes dominant in time.
One can now relax the condition of 8 correlation of the
noise. It is clear that our results apply to all sufficiently
rapidly decaying noise correlators in space and time pro-
vided that the large-x asymptotic of the solution of the
Laplace equations is preserved. The case of power-law
correlators requires special handling, and can be analyzed
along the same lines. It would be of interest to make the
comparison with the results of Medina et al. [3].

VI. NUMERICAL SIMULATION OF THE
ONE-DIMENSIONAL CASE

We performed simple numerical simulations of Eq.
(1.2) on Sun Sparc 2 computer workstation using the
discrete scheme [17]

h(x,t +At)=h(x —1,t)+h(x +1,t)—2h(x,t)
+A{1—[1+g(x,0)/2] "} +q(x,0)V'At
(6.1)
glx,t)=[h(x —1,t)—h(x,0)]*+[h(x +1,0—h(x,0)]*.

All parameters have been scaled into A. The stability in-
troduced by this numerical scheme is rather robust and
allowed us to use time steps Az=0.01 without risk of
running into divergences. The size of the h array with
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periodic boundary conditions was selected to be 500 lat-
tice units and averaging over 1000 systems was per-
formed. The numerical noise 7(x,t) was selected to be an
unsophisticated random number generator of uniform
noise on [ —1,1]. The initial condition was selected to be
h(x,0)=0. The typical run up to times ¢ =100 takes a
day on the Sun Sparc 2 workstation.

Figure 1 displays the time dependence of moments of
the relative interface width

W, (x,t)={[h(x,t)—h(0,2)]")1/" (6.2)
at short length scales x =10 lattice units as a function of
time. The curves bend down at ¢t ~ 30 and interface width
saturates for n =2, 4, 6, 8, and 10. Thus the numerical
steady state is achieved, and if we scale the widths by the
factor [(n —1)M1]'/?" which represents the number of
Gaussian pairs, we get that the curves are nicely superim-
posed, so that the distribution of relative fluctuations at
short length scales is Gaussian. We believe that the
remaining noise is due to insufficient averaging, in fact,
the value (W,—W,)/W, is found to obey the root-
mean-square deviation law.

The time dependence of local cumulants is shown in
Fig. 2. The first cumulant is just the averaged interface

—

In(W,,)

of

oo ar6r 8r d0r

1 R
-1.5
(b) 1.57 In[Wy(¢)]

2 -1

. |
l'.' 4r 6r 8r 10r

FIG. 1. Time dependence of the interface width moments
W,, Eq. (6.2). The curves are labeled with the numbers n of
corresponding W,. In case (a) A=2; (b) A=10. In case (a) the
curve for W, is thick since the rescaled W, (see text) collapses
on top of it. In the case (b) it happens at late times, while ini-
tially the spatial distribution is clearly non-Gaussian. This is
not a lattice effect.
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FIG. 2. Time dependence of local cumulants of the interface
height. (a) X=2; (b) A=10. The straight lines are best fits,
which give the numerical exponents for (a) a;,/z=1.01(1),
a,/2=0.65(1), a3/z=0.97(5); and (b) «a;/z=1.02(1),
a,/z=0.68(1), a3;/z=1.01(5). Data for the fifth cumulant
(where distinguishable) are shown with slightly elliptical dots.

height; the second and third are given by the formula

e, (O=([h(x,0)—(h(x,1))]") ; (6.3)

the expressions for higher ones are a bit more cumber-
some, and we refer the reader to mathematical textbooks.
We see that for A=2,10 and n =2,3 the expected power
laws develop after a transient, but are in good agreement
with our expectations. The fourth and fifth numerical cu-
mulants are, of course, nonzero, although their behavior
is irregular in time at our level of averaging (1000 sys-
tems). Kim, Moore, and Bray [18] used a different nu-
merical scheme and much more extensive averaging.
They reported nonanomalous numerical exponents for
nonzero high cumulants; see also [19] for a discussion.
As is shown in the previous section the nonzero local
high cumulants are incompatible with the steady state for
relative fluctuations. Certainly, this argument does not
necessarily apply to lattice models. The case of A=10
displays a new feature. Here the lattice effects are more
“organized” and rare events associated with sign change
of fluctuating cumulants are intermittent with steady
growth of f, 5. We consider this as an indication that at
large enough A the connection with the continuous equa-
tion is lost to a greater extent (rather than the establish-
ing connection). Further numerical analysis seems to be
appropriate to study the evolution of numerical high-
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order cumulants in different lattice models and the men-
tioned connection with the continuous case. This work is
in progress.

VII. THE TWO-DIMENSIONAL CASE

Let us apply the same analytical method to d =2 case.
The singularity in Eq. (2.8) leads to the term

|x;—x,|

D, (7.1)
v

a

for the second-order cumulant F,. It is impossible to
represent this expression as a part of a function of (2.5)
type which depends exclusively on |x;—x,|/L(¢) and is
multiplied by a power a, of L(t¢). This complication is
due to the presence of logarithms. Accounting for loga-
rithms is a delicate issue which sometimes results in
answers correct only with logarithmic precision. One has
to decide first if the correlation length acquires logarith-
mic dependences. Our study of this problem with ran-
dom initial conditions indicated that the correlation
length does contain logarithms [20],

L(t)=¢"In'"*(vt /a?) . (7.2)

We have also seen that in one dimension the correlation
lengths are the same for both problems (noise-driven and
random initial condition cases). This is our motivation to
use (7.2) for the noise-driven case in two dimensions as
well.

Then only minor modification is needed: the values
f,(0) will be allowed to have logarithmic time depen-
dences. The second cumulant acquires the form

X7 Xy
L(1)

F,(x, —X2»1)=La2(t)f2

[x;—x,|
L(1)

] , (7.3)

with f,(0)=c;+c,InL(2), ¢,, cutoff-dependent con-
stants which make it possible to account for (7.1), and
a,=0. The first equation of the hierarchy again reduces
to (4.2) and (4.3) with 8(0)~1/a? a,=z, and
__ADt
2va? '

Note that the same arguments result in linear motion of
the averaged interface height in higher dimensions (with

a? to be replaced by a?). Returning to Eq. (2.8) at finite
separations one obtains the expression

dinL(t) _ A  a;—2
czT——B—!L 3 (t)[aylayjf3(yl,yz,y3)|y1:y3

=L%) [f2(0)+ —lvlm

|X1_le

AT

F, (7.4)

+ayzaY3f3(YI’YZ>y3)]y2=y3] .
(7.5)

Assuming that with logarithmic precision
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d[InL(t))/dt=1/zt=(1/z)L ~*¢)
one finds
z+a;=2. (7.6)

At short distances Eqs. (4.6) and (4.7) with two-
dimensional arguments are valid. At the level of Eq.
(4.11) the above mentioned convention leads to a;=0,
and one finds from (7.6) a; =z =2. At this stage we have
to reconsider the importance of the diffusive terms in the
hierarchy. Tracing higher orders and using the same rule
as in Sec. IV we find

a,=0. (1.7

The obtained z exponent implies that L (¢) is proportional
to 172 times an arbitrary power of a logarithm, which we
cannot fix by this method. We think that (7.2) is the
correct answer. Returning to the level of power laws one
may claim that the emerging similarity functional is
essentially what is believed to be the Edwards-Wilkinson
type of behavior [21]. However, the higher-order cumu-
lants differ from their zero counterparts for the evolution
of diffusion equation. For example, the fourth cumulant
is nonzero; it satisfies an equation

A
f3(0)=z[aylay4 LG 2T ’Y4)ly1=y4+ e ]

AD? | (y3—y)y;—y))
3v | lys—yillys =yl

) (7.8)

with two other permutations of the indexes in curly
brackets. There is no possibility to absorb the inhomo-
geneity into f3(0) as we managed to do in one dimension.

The power-law renormalization group (RG) rescaling
of our results x =cox’, t=0c?%t', h =h' is consistent (at the
level of power laws) with the available results of
Edwards-Wilkinson type [21], although the distribution is
“logarithmic to all orders.” We do not know whether the
Burgers turbulence is renormalizable since there is no ac-
tion in this model, and RG methods (if any) must be
somehow modified. As in the one-dimensional case, the
general non-Gaussian noise does not lead to a different
behavior of the solution found.

The appearance of the logarithmic correlator in d =2,
see Eq. (7.3), is the signature of the transition to the new
regime [22]. As we mentioned, when z =2 the diffusional
terms can no longer be dismissed; more than that, they
begin to dominate above two dimensions. Thus the non-
linear term is no longer significant, and results can be in-
ferred from the simple diffusion equation.

We now discuss the diverse numerical results [15] on
interface roughness in two dimensions which reported
different exponents of interface width, W(t)<t8 in the
range 0<p3=<0.25. Numerical schemes and different
solid-on-solid models correspond to different discretiza-
tions of Eq. (1.2). “Strong-coupling” results are usually
obtained with large nonlinearity or strong noise ampli-
tude. The problem in this regime is known to be sensitive
to lattice formulation or noise distribution and even has a
remarkable phase transition with the increase of disorder
[23]. For instance, the transition observed numerically
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by Amar and Family [15] may be the indication that the
behavior of the discretized scheme is no longer relevant
to the continuous Egs. (1.1)—-(1.3) with Gaussian noise.
These results are perfectly relevant to their discrete mod-
el. At the moment this discussion expresses just a possi-
ble viewpoint.

VIII. CONCLUSION

It seems possible that other field-theoretical models can
be treated by this method. It is not clear in advance that
the hierarchy can be analyzed even if one breaks it by us-
ing the correct similarity ansatz introduced in accordance
with symmetry requirements or numerical results. The
numerical results are sometimes difficult to obtain; they
are usually quite undetermined even in two dimensions.
Attempts to minimize the number of relevant terms at
each level of the hierarchy lead to exponentially growing
logical schemes with more than one possible solution.
When more than one similarity solution exists it is un-
clear which is actually realized in agreement with initial
and/or boundary conditions. Given that the Hopf equa-
tion (Fokker-Planck equation) is linear the stability of the
similarity functional does not depend upon the functional
and therefore cannot be used for discrimination between
similarity solutions. By analogy with linear partial
differential equations, one may think that properly
prepared sums over possible (similarity) solutions should
meet the initial and boundary conditions which is, in gen-
eral, a nontrivial problem.

The results of Secs. II-V indicate that the one-
dimensional problem has scaling at late times which
meets the requirements of the renormalization group
method, notwithstanding the internal contradictions as-
sociated with actual application of this method [24]. In
two dimensions (see Sec. VI) fields also scale, and from
the renormalization group point of view the available
solution must be placed into the “universality class” of
pure diffusion equation.

Comparing the results of this paper with papers I and
IT we found that the relaxations of random initial condi-
tions and noise-driven dynamics are sometimes charac-
terized by equal exponents if distributions of the random
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fields which are used for the initial conditions and the
permanent forcing are the same. For Gaussian distribu-
tions in one dimension the kinetic energy (94 /3x)* de-
cays as ¢t~ 2’3, so that interface height grows as h ~¢'/3.
The same result is seen from (4.17) for the fluctuating
part of the noise-driven problem. The correlation length
dependence L (t)=t%/3 is the same for both problems as
we have mentioned. In two dimensions we found it self-
consistent to have L (1)=t'2In'"?(vt /a?) in both prob-
lems, and the interface height A ~In!/%(¢) is again the
same in both cases [compare (7.5) and Eq. (8.6) of Ref.
[8], paper II]. We consider this equivalence as a very
strong support of the results presented above.

Equally consistent with the findings of sensitivity to
random initial conditions presented in I and II are our
present expectations that different noise distributions
may lead to principally different behavior, including the
phase transition [23]. The presence of sensitivity was also
obtained by Sinai and by She, Aurell, and Frisch for frac-
tional Brownian random initial conditions [25]. The ap-
plication of all these ideas to the noise-driven case is the
subject of future work.

We conclude this paper by taking a step back and re-
calling that there may still exist other solutions in the
noise-driven case which are not realizable with analogous
random initial conditions.

ACKNOWLEDGMENTS

I am indebted to T. J. Newman for his continuous at-
tention to and interest in this problem and help. I am
thankful to Nigel Goldenfeld for attracting my attention
to the shortcomings of renormalization group and
methods of similarity solutions, to Paul Wiegmann for
helpful conversations, to Boris Spivak for sharing his re-
sults prior to publication and many clarifying and
dramatic discussions, and to Mehran Kardar for the
references connected with numerical high-order cumu-
lants. This work was supported in part by the Material
Research Laboratories at the University of Illinois at
Urbana-Champaign and at the University of Chicago,
and in part by NSF Grant No. NSF-DMR-89-20538.

[1]J. M. Burgers, The Non-linear Diffusion Equation (Reidel,
Dordrecht, 1974).

[2] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A
16, 732 (1977).

[3] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986); E. Medina, T. Hwa, M. Kardar, and Y.-C.
Zhang, Phys. Rev. A 39, 3053 (1989); L.-H. Tang, T. Nat-
termann, and B. M. Forrest, Phys. Rev. Lett. 65, 2422
(1990); J. Krug and H. Spohn, in Solids Far from Equilib-
rium: Growth, Morphology and Defects, edited by C.
Godreche (Cambridge University Press, Cambridge, Eng-
land, 1990).

[4] F. Family and T. Viscek, J. Phys. A 18, L75 (1985); F.
Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys.
Rev. A 34, 5091 (1986); P. Meakin and R. Jullien, J. Phys.

(Paris) 48, 1651 (1987); R. Jullien and P. Meakin, Euro-
phys. Lett. 4, 1385 (1987).
[5] D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708
(1986).
[6] M. Kardar, Nucl. Phys. B290, 582 (1987); J. P. Bouchaud
and H. Orland, J. Stat. Phys. 61, 877 (1990).
[7]1 T. Hwa and D. S. Fisher, Report No. cond-mat 9309016
(unpublished).
[8] Paper I: S. E. Esipov and T. J. Newman, Phys. Rev. E 48,
1046 (1993); paper II: S. E. Esipov, ibid. 49, 2070 (1994).
[917J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon, Oxford, 1990).
[10] A. M. Polyakov, Zh. Eksp. Teor. Fiz. 55, 1026 (1968) [Sov.
Phys. JETP 28, 533 (1969).
[11] A. B. Migdal, Zh. Eksp: Teor. Fiz. 55, 1964 (1968) [Sov.



51 BURGERS TURBULENCE WITH RANDOM FORCING: ... 4379

Phys. JETP 28, 1036 (1969).

[12] U. Deker and F. Haake, Phys. Rev. A 11, 2043 (1975).

[13] D. A. Huse, C. L. Henley, and D. S. Fisher, Phys. Rev.
Lett. 55,2924 (1985).

[14] We recall that numerical study of the so-called inter-
face “width,” W=([h(x,t)—h(x,,t)]*)=2([h(x,)]*)
—2{h(x,,t)h(x,,t)) have been performed [15]. At
large separations |x;—x,|>>L(t) one has W(t)
=2([h(x,t)]*) —{h(x,1))? i.e., only local contributions
matter. It was observed that W(t)<t2? in one dimen-
sion.

[15] D. E. Wolf and J. Kertesz, Europhys. Lett. 4, 651 (1987);
J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289
(1989); J. G. Amar and F. Family, ibid. 41, 3399 (1990); B.
M. Forrest and L.-H. Tang, ibid. 64, 1405 (1990); L.-H.
Tang, B. M. Forrest, and D. E. Wolf, Phys. Rev. A 45,
7162 (1992); T. Ala-Nissila, T. Hjelt, and J. M. Kosterlitz,
Europhys. Lett. 19, 1 (1992).

[16] A. Z. Patashinsky and V. L. Pokrovskii, Zh. Exp. Teor.
Fiz. 46, 994 (1964) [Sov. Phys. JETP 19, 677 (1964)].

[17] The numerical method and partly the code were

developed by David Y. K. Ko, T. J. Newman, and Micha-
el E. Swift, and were kindly provided by T. J. Newman.

[18] J. M. Kim, M. A. Moore, and A. J. Bray, Phys. Rev. A 44,
2345 (1991).

[19] E. Medina and M. Kardar, J. Stat. Phys. 71, 967 (1993).

[20] In Sec. VIII of paper II we found the expression for the
edge of the absorbing plane, which is the only possible
correlation lengthlike scale. Its logarithm was denoted by
Z

[21] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London
Ser. A 381, 17 (1982).

[22] C. A. Doty and J. M. Kosterlitz, Phys. Rev. Lett. 69, 1979
(1992).

[23] B. Z. Spivak and B. I. Shklovskii, in Hopping Transport in
Solids, edited by V. M. Agranovich and A. A. Maradudin,
Modern Problems in Condensed Matter Sciences Vol. 28
(North-Holland, Amsterdam, 1991).

[24] T. J. Newman (private communication); G. L. Eyink (un-
published).

[25] Ya. G. Sinai, Commun. Math. Phys. 148, 601 (1992); Z.-S.
She, E. Aurell, and U. Frisch, ibid. 148, 623 (1992).



